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Increasing the heat: 

Developing next-generation high-temperature 

steels to deliver commercial fusion energy
Dr. David Bowden – Materials Science and Engineering Group Leader, UKAEA
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The climate emergency
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https://www.scientificamerican.com/article/what-caused-the-la-wildfires-

how-investigators-will-find-out/

https://www.worldweatherattribution.org/climate-change-increased-

the-likelihood-of-wildfire-disaster-in-highly-exposed-los-angeles-area/

• Climate change increased likelihood of weather conditions leading 

to wildfires by 35%.

• Coupled with more extreme seasonal drought – wet cycles; 

hydroclimate whiplash. 

https://www.bbc.co.uk/news/science-environment-24021772

https://www.worldweatherattribution.org/climate-change-increased-the-likelihood-of-wildfire-disaster-in-highly-exposed-los-angeles-area/
https://www.worldweatherattribution.org/climate-change-increased-the-likelihood-of-wildfire-disaster-in-highly-exposed-los-angeles-area/
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Fusion as part of the solution
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Source: https://www.energydashboard.co.uk/historical

Global energy demand expected to increase by 50% by 2050 

[1], with double the demand forecast within the UK [2].

Coincidentally – UK net zero target set for 2050 [3].

Reliable baseload supply needed to replace dependence on 

fossil fuels – government ambition to deliver 24GW of nuclear 

power by 2050 [4]. 

Fission: SMR, HTGR, development of Hinkley Point and 

Sizewell C.  

[1] https://www.eia.gov/outlooks/ieo/consumption/sub-topic-03.php

[2] https://assets.publishing.service.gov.uk/media/5fdc61e2d3bf7f3a3bdc8cbf/201216_BEIS_EWP_Command_Paper_Accessible.pdf

[3] https://assets.publishing.service.gov.uk/media/6194dfa4d3bf7f0555071b1b/net-zero-strategy-beis.pdf

[4] https://www.gov.uk/government/publications/great-british-nuclear-overview/great-british-nuclear-overview

Source: https://grid.iamkate.com 

https://www.eia.gov/outlooks/ieo/consumption/sub-topic-03.php
https://assets.publishing.service.gov.uk/media/5fdc61e2d3bf7f3a3bdc8cbf/201216_BEIS_EWP_Command_Paper_Accessible.pdf
https://assets.publishing.service.gov.uk/media/6194dfa4d3bf7f0555071b1b/net-zero-strategy-beis.pdf
https://www.gov.uk/government/publications/great-british-nuclear-overview/great-british-nuclear-overview
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• The need for alternative energy sources. 

• What is fusion and what role can it play?

• The fusion landscape and UKAEA.

• Why are steels important and what do they offer us?

• Critical technical challenges.

• How the UK can lead – a ‘call to arms’

Outline
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What is nuclear fusion?
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In the sun:

• Core temperature of 15,000,000°C.

• Fuse hydrogen isotopes to form He. 
Stellar fusion continues all the way up 
to iron!

• Uses gravity to enable fusion.

Neutron (14.1 MeV)

+

+

Tritium

+

+

Helium (3.5 MeV)

+

+

In a fusion power plant:

• Plasma at 150,000,000°C.

• Fuse hydrogen isotopes; deuterium and tritium.

• Generate 17.6MeV energy per fusion reaction.

• Use a combination of high temperature and magnetic 
confinement to enable fusion (other methods possible).

Coal-fired plant (1GW) 

= 2.7 MT coal p/a

Fusion plant = 

250 kg DT p/a

Deuterium
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International fusion landscape

Not protectively marked | © UKAEA 2025 – All Rights Reserved6

Source: https://nucleus.iaea.org/sites/fusionportal/Pages/FusDIS.aspx

Total funding*:

• £5.8bn to date

• £750m in 2024

• £343m public

• Subsequently 

an extra £1bn 

announced in 

late 24/25!

Compare this to 

Hinkley Point C 

predicted to 

cost ~£45bn! 

*from Fusion 

Industry 

Association report 

2024
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UKAEA and materials R&D
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• Collaborate closely with fusion technology drivers, sector 

suppliers, and academia, to assess the performance of 

materials in nuclear and fusion environments.

• Division of ~80 people, including scientists, engineers, 

operators, technicians and graduates.

• Hosting secondees, summer students and apprentices.

• 40+ PhDs and masters projects.

• £50m nuclear materials development and testing facility.

• 4400m2 for processing and analysis of neutron 

(and proton) irradiated materials.

• Open to universities and industry for bespoke and 

standardised test techniques.

Samples up to 

3.75 TBq Co60
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The fusion power plant
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• Blankets will experience a temperature gradient 
between coolant inlet and outlet regions.

• Promoting a wider separation between the two 
increases the thermal efficiency of the plant.

Economic case for higher temperatures
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OPERATING TEMPERATURE

700°C650°C450°C300°C 550°C 850°C +

Conventional RAFM (e.g. Eurofer97)

Advanced RAFM steels

Oxide dispersion strengthened (ODS) steels

Ceramic matrix composites (e.g. SiCf/SiC)

Hot He out

Hot PbLi out

Cold PbLi in

Cold He in

𝜂𝑡ℎ ≤ 1 −
𝑇𝐶
𝑇𝐻

L. V. Boccaccini, et. al, Objectives and status of EUROfusion DEMO 

blanket studies, Fusion Eng. Des. 109–111 (2016) 1199–1206. 

https://doi.org/10.1016/j.fusengdes.2015.12.054.

• Capturing more thermal energy in coolant 
increases TH, leads to additional power output.

• This necessitates materials capable of 
operating at increased temperatures.

Net power generated for different coolant outlet 

temperatures (3.5GWth fusion plant concept)
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L.E. Steele, Neutron irradiation embrittlement of reactor pressure-

vessel steels, in: 1969. 

https://doi.org/https://inis.iaea.org/records/rfyr8-jp862.

Fusion steel challenges
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Tan et al. 2020

Pintsuk et al. 2022

Cristalli et al. 2018

Materna-Morris et al. 2007

Grams

Kilograms

Tonnes

n 14 MeV

Cr Mn Si P

https://doi.org/10.1016/j.jnucmat.2020.152228

n 56Fe

He

53Cr
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How to address these challenges?
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Reduced-activation ferritic-

martensitic (RAFM) steel

Ni
28

Nb
41

Mo
42

W
74

Ta
73

V
23

Void swelling

0.3 to 0.6 Tm

FCC = 1% dpa-1

BCC = 0.2% dpa-1

Clustering

Si
14

Mn
25

Supply chain

Circularity

High quality

Ring-fenced
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Introducing NEURONE
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NEUtron iRradiatiOn of advaNced stEels

£12.5m until 2028

~70 collaborators across 11 organisations.

Develop and deliver an industrially scalable fusion-grade advanced steel capable of operating up 

to 650°C in a fusion breeder-blanket environment.
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NEURONE – WPs partners and goals
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A national programme
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Advanced RAFM alloy development
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Significant dislocation density – 

drives up precipitate formation

Extended duration to evolve MX 

precipitates enabling high temperature 

strength and irradiation tolerance

Optional step for a cyclic heat 

treatment – refinement of PAGs 

enabling enhanced alloy toughness

Cr

W

Mn

V

Ta

C

N

9%

1.1%

Corrosion resistance and 

minimise DBTT shift
No change 8-9%

Reduce Laves phase, solution 

strengthening

Increase for higher 

strength
1.5 - 2%

0.4% Austenite stabiliser
Reduce to minimise 

irradiation clustering

0.05 – 

0.25

Eurofer97 

Spec. [1]
NEURONE 

Spec.

0.2%
Precipitate former (compensate 

for Ta reductions)
Increase for more MX

0.2 - 

0.3%

0.12%
Precipitate former, grain 

refinement

Reduce to lower 

austenisation temperature

0.05 – 

0.1%

0.11% Precipitate former Decrease for less M23C6

0.07 – 

0.1%

0.03% Precipitate former
Increase for higher 

strength

0.03 - 

0.1%

Si 0.05% Ferrite stabiliser, flowability
Reduce to minimise irrad. 

clustering
0.05%

Ti 0.02% Precipitate former Increase for more MX
0 - 

0.07%

[1] E. Gaganidze et al., Development of EUROFER97 database and material 
property handbook, Fusion Eng. Des. 135 (2018) 9–14. 
https://doi.org/10.1016/j.fusengdes.2018.06.027.

B 0% Precipitate refinement
Increase for enhanced 

creep life

0 - 

0.03%

Alloy chemistry Thermomechanical treatments&

Keep an eye out for: D. Bowden, et al., Engineering the next-generation of 

industrially scalable fusion-grade steels, J. Nucl. Eng. In preparation (2025).



| 100 µm

58% refinement in 

grain size

100 µm

Alloy microstructures
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“Conventional” RAFM 

(Eurofer97)
“Advanced-” or “A-”RAFM 

(NEURONE steel)

10× increase in MX 

precipitate density
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Alloy performance
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Higher values = better performance or value

Conventional 

RAFM

Need to establish next

RAFM

RAFM with modified TMT

30% improvement in high temperature 

strength using conventional RAFM 

(Eurofer) alloy chemistry with modified 

TMT.
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Irradiation performance
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Low- to mid-energy

protons

Fission neutrons – Material Test Reactors 

Ion and proton beams – accelerator driven sources

Dual beam irradiation

Fe He
Dual beam – synergistic 

effects

Still some way 

to go!
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2MeV self ion (Fe2+) irradiation at 350°C.

Nanoindentation data (irradiated region only 1m thick!).

Irradiation performance
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• Produced by the Materials Processing Institute in June 2024.

• Using Eurofer97 specification chemistry, cast using an electric arc furnace (EAF), replicating industrial-scale conditions.

• Continuous casting used to produce an ingot sized at 0.3 x 0.14 x 13 metres, weighing approximately 5.5 tonnes.

• The EAF production route will next be explored to produce new Advanced RAFM grades, developed in the NEURONE 

programme, targeting operation at 650°C.

• Residual activity comparable to Eurofer97 after plant shutdown (neither satisfy UK LLW criterion!).

First UK ‘RAFM’ multi-tonne ingot

20 Not protectively marked | © UKAEA 2025 – All Rights Reserved

Cr Ni W Ta V Mn Mo Si C N P S O

Eurofer97 EAF MPI ingot 10.115 0.020 1.004 0.092 0.223 0.457 <0.0005 0.147 0.11 0.023 0.009 0.004 0.007

Eurofer97 nominal targets 8.5 – 9.5 <0.01 1 – 1.2 0.1 – 0.14 0.15 – 0.25 0.2 – 0.6 0.005 max. 0.05 max. 0.09 – 0.12 0.015 – 0.045 0.005 max. 0.005 max.
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The big picture
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EU: Eurofer97; >10 heats, largest being 3.5t, 7.5t + 15t 

KIT/OCAS

Japan: F82H; 9 heats (between 2 to 20 tonnes)

Korea: ARAA; 5 tonne heat

China: CLAM; 3 x 6.4 tonne heats, 5t (CLF-1)

India:  IN-RAFM; 2.5 tonne heats

UK: EAF-RAFM; 5.5 tonne heat

R
A

F
M

Not produced at tonnage-scale.

Efforts across US (ORNL), EU (KIT, CEA, Plansee, Zoz), Japan (JAEA)

Current ‘fusion-grade’ suppliers are Zoz (Germany) and MBN nanomaterialia 

(Italy) 

O
D

S

USA: Castable nanostructured alloys (CNAs) – up to 5t

Europe: Modified Eurofer (CNA variants) – various, up to 100kg VIM per heat

UK: NEURONE up to 30t EAF (planned)
A

R
A

F
M

/ 
C

N
A
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Fusion steel economics
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Electric Arc Furnace

Advanced RAFM grades

VIM & VAR/ESR

International fusion steel 

programmes (RAFM and 

CNAs / advanced variants)

Atomisation, ball mill and 

consolidate

Oxide dispersion 

strengthened (ODS) steels

~£10’s/kg ~£100’s/kg ~£1000’s/kg

Cost

100’s tonnes ~10’s tonnes ~100’s kgs

Scale
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$6.9 trillion global fusion market forecast [1].

Not just fusion! Fission (GenIV), oil and gas and other markets which 
may require specialist steels. Opportunities beyond to provide:

A national opportunity 
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[1] https://assets.publishing.service.gov.uk/media/65301b78d06662000d1b7d0f/towards-fusion-energy-strategy-2023-update.pdf

[2] https://www.gov.uk/government/consultations/invest-2035-the-uks-modern-industrial-strategy/invest-2035-the-uks-modern-industrial-

strategy#our-approach--a-modern-industrial-strategy

[3] https://www.sustainsteel.ac.uk

[4] https://www.swansea.ac.uk/science-and-engineering/research/climate-action/research/social-political-change-circular-economy/i-space/#i-

space-achievements-february-2023=is-expanded&meet-the-team=is-expanded

[5] Transforming Steelmaking at Port Talbot" given by Richie Hart (Process Technology Manager for Tata Steel UK) on 28th Jan 2025

The UK’s modern industrial strategy [2] & steel strategy:

- 8 priority sectors, including; advanced manufacturing and clean 

energy industries.

Need to build on the progress within programmes like SUSTAIN [3] 

and i-SPACE [4] to build a resilient, strategic supply of high-grade 

scrap. 

~9Mt scrap generated in the UK per year. 

~8Mt exported [5]

Low-volume, high value steels for sovereignty 

and economic growth within the UK. 

https://assets.publishing.service.gov.uk/media/65301b78d06662000d1b7d0f/towards-fusion-energy-strategy-2023-update.pdf
https://www.gov.uk/government/consultations/invest-2035-the-uks-modern-industrial-strategy/invest-2035-the-uks-modern-industrial-strategy#our-approach--a-modern-industrial-strategy
https://www.gov.uk/government/consultations/invest-2035-the-uks-modern-industrial-strategy/invest-2035-the-uks-modern-industrial-strategy#our-approach--a-modern-industrial-strategy
https://www.sustainsteel.ac.uk/
https://www.swansea.ac.uk/science-and-engineering/research/climate-action/research/social-political-change-circular-economy/i-space/#i-space-achievements-february-2023=is-expanded&meet-the-team=is-expanded
https://www.swansea.ac.uk/science-and-engineering/research/climate-action/research/social-political-change-circular-economy/i-space/#i-space-achievements-february-2023=is-expanded&meet-the-team=is-expanded
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• The need for a reliable baseload to tackle climate change and meet our growing 
energy needs. 

• Fusion processes and key materials challenges. 

• How steel can fulfil an important role within commercial fusion.

• Introduced the UK NEURONE programme exploiting the flexibility of steel to 
deliver a high-temperature candidate with the properties we require. 

• Explored the international landscape and how the UK is in a position to lead the 
way in developing an integral specialist steel market. 

Bringing it all together

Not protectively marked | © UKAEA 2025 – All Rights Reserved24

UKAEA will host a ‘Future Fusion Steel Suppliers’ event later this year:

• Outline the challenges we face around fusion-grade steel.

• Introduce key players in the field and develop a network of specialists. 

• Galvanise support to develop a fusion / speciality steel supply chain. 

• Bring the national steel industry together.
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Thank you for listening
Dr David Bowden

Materials Science and Engineering – Group Leader

david.bowden@ukaea.uk
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