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- Oxide scale growth on surface during high
temperature processing

 Yield loss — 1.6-3% total feedstock lost
due to scale

I 10pm
Detector=LED Mode=SEM

« Surface defects

« Premature failure (manufacture,
installation and service)

« Aesthetics — customer product rejection BAKELITE MOUNTING RESIN
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A shape of engineering significance...

(BBC News, 2024)
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(J Grant, 2019)
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Project Background

Wall thickness, Chemistry, Thermal Cycle, )
Furnace Environment, Heating Approach, Geometry

Oxidation = f (

« Reduction of scale
» Reduced plant damage and contamination

- Improved surface quality

« Consistent and predictable failure mode

Fear g AN B T ~* Key scale parameters
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Project Background

© Proactive scale management
+

~]Computational thermodynamics[]

@Increased manufacturing agilityi!

Development of
Predictive

Computational
Oxide Kinetics
Model

Industrial Trial

The Effect of

Curved

Geometry on
Oxide Kinetics
and Mechanics

Construction of
Process-
Specific Oxide

Scale Failure
Diagram




Oxide Kinetics Computational Model

STEEL SCALE GASEOUS
ENVIRONMENT

+«—— Line of mesh symmetry
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Oxide Kinetics Computational Model £z .
1

Model

l Sub-lattice modelling l
The:imtodbynamic ﬂ Kinetic database
atabase g Visual Studio Code ) development
development
MOVING PHASE
DEFINING EQUATION . INTERVENING VARIABLE BOUNDARY SOLUTION
ac 1dc 0%c Crank-Nicolson Scheme 4
Ok _ p (L3, O e ' [ e=fm | 88, = ve, et
Software k k
Second Order Non-linear Partial Differential Isobarothermal system with fixed interfacial
Equation compositions

. Computational Domain
(Mesh, ICs, BCs)



Oxide Kinetics Computational Model
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Curved Geometry Effects: Kinetics

 For tubes with an inner radius larger than 200mm, inner diametric changes no longer WS
influential.

%
%
? The Effect of

- Approaching flat plate solution
- Tata Tubes Install® Plus tube radii range from to 5.3mm to 80.6mm

« Critical radius is industrially relevant

Thickness gain (mm)

| I
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500 600 800 900 1000

Inner Radius (mm) Inner Radius (mm)

Kendall, M.; Coleman, M.; Cockings, H.; Sackett, E.; Owen, C.; Auinger, M. Computational Thermochemistry for Modelling Oxidation During the Conveyance Tube Manufacturing dRE N T
Process. Metals 2024, 14,1402. https://doi.org/10.3390/met14121402




The Effect of
Curved
Geometry on

Curved Geometry Effects: Kinetics

- Thermogravimetric Analysis — experimentally challenging andMechanics

« Unexpected mass loss and isothermal noise

- Forced vibration induced 15nb 05/02/25

by thermal currents

« Compressible flow
boundary layer effects
within furnace tube and
sample tube

Temperature (°C)
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Curved Geometry Effects: Kinetics

- Thermogravimetric Analysis — experimentally challenging andMechanics

« Unexpected mass loss and isothermal noise

« Forced vibration induced
by thermal currents

« Compressible flow
boundary layer effects
within furnace tube and
sample tube

Temperature (°C)

- Refractory ‘'dummy’ test

- Oxide mass gain =

difference between ‘ St |
curves . S )

6 7
x104

- 5% difference between experiment and model prediction for same conditions
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Curved Geometry Effects: Mechanics

The Effect of
Curved
Geometry on

Oxide Kinetics

Stress induced by oxide OXIDE R

« Thermal mismatch
« Phase transformation

e Growth I

Multi-layer residual stress transfer

from substrate to oxide
METAL t

Residual stresses from the manufacturing process
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Curved Geometry Effects: Mechanics

: The Effect of

Curved
Geometry on
Oxide Kinetics
and Mechanics

- Mechanical approach (‘Equal biaxial stretching’)

. “Clamped” oxide (no material flow),

01— Agln
- Surface area change,
+ Change in material thickness K(\/%(l p +ﬁz>
S - here A =
« Oxidation-centric approach wiere J1—a+a?

. Metal-to-oxide transformation + phase/microstructural
transformations

Waustite lower interface —

«—— Austenite upper interface

- Specific to curved surfaces \\
Wustite upper interface \
-0, (¢p>1)
« New oxide at metal-scale interface and substrate retreat leads to OXIDE L
contact loss — oxide no longer able to follow volumetric changes M
« Thermally, o,,7, and dimensionally, a,, ¢ , induced Austenielonerinteriace
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Curved Geometry Effects: Mechanics

aox,G

Oradial
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Curved Geometry Effects: Mechanics

o ox,T
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Advanced Oxide Scale Failure Diagram ==

Specific Oxide

Scale Failure
Diagram

« Fracture mechanics theory

- Operational history parameter, o

 Better representation than oxide thickness alone

—Through-thickness cracking
—Interfacial (+)
Interfacial (-)
* Buckling
+ Crack deflection
—Spalling
——Shear

Critical oxide thickness = 0.0120% 3 ttical brittle failure strain = 0.10564 w = w (KI C , C’ f, E’ v’ r, / L’ 50x) l
A 8.99“-“‘ ’
fiases '§ht;liin

raciol crackind

nte
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Advanced Oxide Scale Failure Diagram

Case Study: Transition to induction heating technology at Corby site

- Faster, more aggressive heating
- Improved operational control
- Operational history changes - total strain changes

« Maximum permissible residual hoop stress of 100MPa at 530Hz current frequency
(Drobenko et al, International Journal of Engineering Science, 2017) — numerical result

Hoop Stress Source Egas (=) €ina ()
* E£4q5 =—0.0948, ¢£;,;, =0.0032
gas roin Thermal — _g 0988 -0.0008
oxidati mismatch
- Change from overall tensile to i)r(:dgc'gg Growth
compressive strain if heating stress 0.0047 0.0047

controlled (intrinsic)
Forming

Manufacturing
-induced

-0.0007

Drawing
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Advanced Oxide Scale Failure Diagram ==

Specific Oxide
Scale Failure

Diagram

Case Study: Transfer to induction heating technology at Corby site

- Parabolic rate law - 1s resolution data for normalisation soak period (t < 5mins)

« Oxide thickness, 8, of 99.7um after 3-minute normalisation at 1000°C

£4as([A]) = —0.095, £;,4 = 0.0032 (B))
Ooxt=180s = 99.7um

—Through-thickness cracking
——|nterfacial (+)

Interfacial (-)
~—=Buckling
—Crack deflection
——Spalling
~—Shear

60
Thickness (um
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Specific Oxide
Scale Failure

Advanced Oxide Scale Failure Diagram ===

Diagram

Case Study: Transfer to induction heating technology for tubbe normalisation
at Corby site

Gas furnace normalisation
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Spolhng Throughffchlckness 3 i Rl

Induction furnace normalisation

" - Through thickness
. rnterfac,-i‘qﬂ ‘;‘- crqckpg
J cracking= . ‘
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£
I 10pm JEOL 20/02/2024
x1,000 Vacc=15.0kV Detector=LED Mode=SEM WD=10mm 10:32:17
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Conclusions

- Experimental (thermogravimetric) assessment of high-temperature oxidation on curved
surfaces prone to significant uncertainty.

- Difficult to recreate complex industrial conditions.

« Computational, geometry-specific modelling of oxidation offers better opportunity for multiple
parameter control and continuous oxide thickness gain data.

« High-temperature oxidation of carbon steel on curved geometry should be considered
separately from planar geometries for small radii (<200mm internal) tubes.

« Oxide thickness data is integral to analytical mechanical models of oxide stress state and
adhesion.

- Advanced Oxide Scale Failure Diagram can be used to represent critical strains for different
failure modes.

« Example of use during assessment of Tata’s transition from gas-barrel to induction
furnace normalisation of conveyance tubes.
2]



Real-World Applications & Impact

« Impact at different levels

« Company

Thickness gain (mm)

« More efficient use of feedstock

- Extended plant life

. Inner Radius (mm)
* Industry 4.0 techniques

£gas([A]) = —0.095, 4,4 = 0.0032 (B)

- Scientific f B

« New applications for computational thermochemistry

« Community

« Better use of resources
- Transition to sustainable manufacturing tech

« Higher quality products with improved servicq®

22
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Specific Oxide

Advanced Oxide Scale Failure Diagram ===

Scale Failure
Diagram

Case Study: Transfer to induction heating technology for tubbe normalisation
at Corby site

Critical

. Failure .
For 8,,= 100um (provided by model): e St1rg:)n(f;>r Egas Z Ecrit?  Eind = Ecric?
* &gas =-0.0032, g;,4 = 0.0032 Buckling  -0.0035
- Crack
. Tronsmon.from overall . deflectio  -0.0107
compressive to overall tensile n
strain with heating control Interfacia
L cracking
 Spalling eliminated via heating Shear
control
Spalling
« Compressive failure modes Through-
eliminated by tensile state e.g. ek

cracking

buckling, crack deflection

« Many other options for parameter Brittle*  +0.1056
control
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Curved Geometry Effects: Mechanics

J ox,T

Composite Simpson'’s rule on stress differential function

MPa
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Curved Geometry Effects: Mechanics

¢ The Effect of

Curved

O0ox,G Svisotietes

and Mechanics




Curved Geometry Effects: Mechanics

Manufacturing stress: Forming

P235GH Industrial Test

® Thin-walled elastic-plastic model
® Thin-walled strain hardening
® Thick-walled strain-hardening

(GPa)

effective

a
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The Effect of
Curved
Geometry on
Oxide
Kinetics and
Mechanics

Axial 0°

Pipe 3 Pipe 4
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M. Krzyzanowski and J. H. Beynon, Modelling and Simulation in Materials Science and Engineering, 2000.
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